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Abstract: Diamond, as an ultra-wide bandgap semiconductor, has become a promising candidate for next-generation microelec-
tronics and optoelectronics due to its numerous advantages over conventional semiconductors, including ultrahigh carrier mo-
bility  and  thermal  conductivity,  low  thermal  expansion  coefficient,  and  ultra-high  breakdown  voltage,  etc.  Despite  these  ex-
traordinary properties, diamond also faces various challenges before being practically used in the semiconductor industry. This
review begins with a brief summary of previous efforts to model and construct diamond-based high-voltage switching diodes,
high-power/high-frequency  field-effect  transistors,  MEMS/NEMS,  and  devices  operating  at  high  temperatures.  Following  that,
we will  discuss recent developments to address scalable diamond device applications, emphasizing the synthesis of large-area,
high-quality CVD diamond films and difficulties in diamond doping. Lastly, we show potential solutions to modulate diamond’s
electronic  properties  by  the  “elastic  strain  engineering”  strategy,  which  sheds  light  on  the  future  development  of  diamond-
based electronics, photonics and quantum systems.
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1.  Introduction

Diamond  has  an  extraordinary  combination  of  outstand-
ing characteristics, making it an 'extreme' material highly desir-
able for various applications. Due to its well-known mechanic-
al  properties,  in  particular  hardness,  it  is  extensively  used  as
an abrasive and tooling material  in a wide variety of  industri-
al  applications, including indenters,  grinding, cutting, drilling,
polishing,  honing,  sharpening,  lapping,  sanding,  and  wire
drawing  tools,  usually  in  high-stress  conditions.  Additionally,
they  are  responsible  for  the  ability  of  diamond  anvil  cells
with  diamond  compacts  for  high-pressure,  high-temperature
research[1–3] to  apply  materials  to  pressures  found  deep  in-
side the Earth for various physical  and geological  studies.  Be-
sides these broad mechanical and structural applications, dia-
mond serves as a road map for an unknown number of years
in  the  development  of  power  electronics  and,  more  broadly,
the  whole  microelectronics  industry.  Diamond  semiconduct-
ors  have attracted considerable interest  in recent years[4–6] as
a  possible  alternative  for  high-power  high-frequency  elec-
tronics  in  the  next-generation  integrated  circuits  due  to  the
ultrawide bandgap[7, 8], ultra-high thermal conductivity[9], excel-
lent dielectric breakdown field[5], long carrier lifetime, high sat-
uration carrier velocity, and the highest electron and hole mo-
bilities[10].

Despite  its  outstanding  features  for  electronics  and
photonic devices, considerable improvements are still anticip-
ated  since  its  present  level  is  far  lower.  Its  operation  lifespan

is  far  shorter  than  projected,  and  it  has  remained  at  the  fun-
damental  research  level  for  decades.  Additionally,  reprodu-
cible  and  large-scale  manufacture  of  diamond  crystals  con-
tinues  to  be  a  challenge[11–13].  We  shall  begin  this  review  by
discussing  the  electronic  characteristics  of  diamonds,  which
permit  many  electronic  devices  and  nano-  or  micro-elec-
tromechanical  systems.  Then,  we  will  discuss  the  present
state of diamond wafer research and offer objectives for over-
coming  the  present  obstacles  associated  with  synthesizing
wafer-scale diamonds with low dislocation density and low res-
istivity.  Finally,  we  shall  cover  alternative  avenues  for  dia-
mond  electronics  facilitation,  particularly  the  so-called  “elas-
tic  strain  engineering”  strategy  based  on  microfabricated
diamonds. 

2.  Diamond electronic devices and nano- or
micro-electromechanical systems

Diamond is an enthralling semiconductor with extraordin-
ary  physical  features,  including  ultrawide  bandgap  (5.47  eV),
ultra-high thermal conductivity (2200 W/(m·K))[14], large break-
down  electric  field  (10  MV/cm),  high  carrier  saturation  velo-
city  (1.5–2.7  × 107 cm/s  for  electrons,  0.85–1.2  × 107 cm/s  for
holes)[5, 15] and  high  carrier  mobility  (4500  cm2/(V·s)  for  the
electrons, 3800 cm2/(V·s) for the holes)[10]. Thanks to the com-
bination of various extreme performances, diamond is an excel-
lent  platform  for  nano-  and  micro-fabrication,  allowing  for
the development of a variety of robust sensors, diamond elec-
tronic devices, such as power diodes, switching devices, high-
frequency field-effect transistors (FET), and nano- or micro-elec-
tromechanical systems (NEMS/MEMS), would perform exceed-
ingly well. 
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2.1.  Diamond diodes

The  most  often  used  semiconductor  diode  is  a  crystal-
line semiconductor material  coupled to two electrical termin-
als  through  a  p–n  junction.  For  high-power  and  microwave
switching,  diodes  serve  as  the  basic  structure,  and  they  also
serve  as  the  building  blocks  for  three-terminal  devices.  Both
unipolar and bipolar diodes have been experimentally demon-
strated, including p-type-intrinsic-n-type (p–i–n) diodes, Schot-
tky  barrier  diode  (SBD)[16] (Figs.  1(a)  and 1(b)),  junction  barri-
er  Schottky  diodes  (JBSDs),  metal-intrinsic-p-type  (M–i–P)  di-
odes,  and Schottky  p–n diodes.  One of  the  earliest  diamond-
based  power  devices  was  a  high-temperature  diode,  com-
posed of a Si-based Schottky material deposited on a homoep-
itaxial  boron-doped diamond,  which raised the working tem-
perature of a Schottky diode structure above 1000 °C[3]. Numer-
ous  studies  have  revealed  details  about  the  construction  of
an M–i–P diode[17–19]. The M–i–P Schottky barrier diode config-
uration  can  compensate  for  the  absence  of  carriers  in  the

drift  zone  and  can  resist  breakdown  voltages  of  a  few  kilo-
volts  with  thin  drift  regions  (<  25 μm)  due  to  the  diamond’s
high  critical  field  strength.  A  breakdown  voltage  of  up  to
10  kV  with  a  corresponding  electric  field  of  7.7  MV/cm  was
found  for  a  p–i–n  diode[20],  which  could  be  a  cutting-edge
and attractive diamond device for high-power applications. Al-
though the electrical properties of diamond p–i–n diodes un-
der  static  conditions  have  been  widely  studied,  the  switch-
ing  characteristics  are  still  unclear,  and  the  recovery  wave-
form is the primary concern. Traoré et al.[21] studied the switch-
ing capabilities for diamond p–i–n diodes when they were util-
ized  as  freewheeling  diodes.  It  can  be  switched  from  the  on-
state  to  the  blocking  state  at  850  A/cm2,  and  the  time  requi-
red for  reverse recovery is  150 ns.  In  addition,  Schottky barri-
er diodes with a high-power figure of merit (244 MW/cm2)[22],
and  forward  direct-current  (DC)  current  (20  A)[23],  as  well  as
fast  operation  with  low-loss  switching[24] (Figs.  1(c)  and 1(d))
have  also  been  successfully  fabricated.  Shimaoka et  al. [25]

 

 

Fig.  1.  (Color  online)  Representative  diamond  devices.  (a,  b)  A  picture  and  schematic  of  a  diamond  SBD[16].  (c)  Diamond  SBD  is  placed  in  a
metal/ceramic container with high-temperature turn-off capabilities[24]. (d) Switching characterization of a diamond vertical SBD at 50, 150, and
250 °C, respectively[24]. (e) Schematic cross-section along with the red dot in a top-view optical picture of a MOSFET[31]. S, D, and G represent the
source, drain, and gate contacts, respectively. (f) Drain current (Id) versus drain voltage (Vds) of a diamond MOSFET at room temperature[31].  (g)
Scanning electron micrograph (SEM) of diamond-on-insulator devices with multiple cantilevers[40]. (h) SEM image of a fabricated compact focus-
ing grating coupler device[41]. (i) SEM image of a freestanding diamond resonator in a fabricated electro-optomechanical device[42].
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demonstrated a betavoltaic cell with a super-efficient conver-
sion,  approaching  the  theoretical  limit  of  Shockley–Queisser
efficiency,  utilizing  a  diamond  p–n  junction.  Perez et  al.[16]

demonstrate  that  diamond  devices  may  substantially  en-
hance the capability of power converters,  particularly at elev-
ated  temperatures.  At  450  K  junction  temperature,  diamond
semiconductors  may  reduce  semiconductor  losses  and  heat-
sink  volume  three  times  compared  to  SiC  devices.  Addition-
ally,  they  show  that  switching  frequencies  in  diamond-based
power converters may be five times greater than in SiC-based
power  converters,  with  lower  overall  semiconductor  losses
and a smaller heatsink. 

2.2.  Field-effect transistors

Diamond has been investigated in the exploitation of pro-
totype  field-effect  transistors  (FETs).  At  the  moment,  several
designs  for  power  electronics  applications  which  is  suitable
to high temperature and radiation settings are being investig-
ated.  Lee et  al.[26] reported  a  hydrogen-terminated  diamond
(H-diamond,  a  common way using to increase the diamond’s
surface conductivity[27–29]) transistor that demonstrates a favor-
able  symbiosis  of  metal-insulator-semiconductor  FET  (with
ON and OFF current of  0.8 and 10–9 μA/μm, respectively)  and
metal–semiconductor  FET  with  near-perfect  subthreshold
(swing  of  67  mV/dec)  performance  operations  in  the  same
single  multilayered  device.  Zhang et  al.[30] demonstrated  a
drain-source  voltage  of  –20  V  and  a  current  on-off  ratio  over
109 for  Y/Al2O3/H-terminated  diamond  FET,  which  meet  the
practical  standard.  Diamond-based power metal–oxide–semi-
conductor  FETs  (MOSFETs)  have  also  been  shown  in  recent
years. Matsumoto et al.[31] developed diamond MOSFETs with
an  inversion  channel  and  typically  off  properties  using  phos-
phorus-doped  n-type  matrix  on  a  (111)  diamond  and  atomic
layer  deposition  Al2O3 gate  oxide.  Its  schematic  cross-section
and top-view image are shown in Fig. 1(e).  The negative gate
voltage regulated the drain current, forming an inversion chan-
nel with a p-type feature at the interface between the n-type
diamond  and  the  Al2O3 layer.  As  shown  in Fig.  1(f),  the  dia-
mond MOSFET shows the highest drain current density of 1.6
mA/mm and field-effect mobility of 8.0 cm2/(V·s) at room tem-
perature.  Recently,  the  concept  of  a  deep-depletion  dia-
mond  MOSFET  is  developed  and  proven  to  be  an  excellent
choice for  developing competent diamond MOSFETs[32].  Mas-
ante et al.[33] demonstrated a bidirectional diamond deep-de-
pletion MOSFET with 250 °C operations quasi-static character-
istics,  a  threshold voltage of  about 35 V,  and a low minimum
gate leakage current of  1.00 × 10−4 mA/mm at a gate–source
bias VGS =  50  V,  which  is  promising  when  used  at  high
voltage and high temperature. 

2.3.  Diamond nano- or micro-electromechanical

systems

NEMS/MEMS  have  attracted  interest  in  various  applica-
tions, including accelerometers, physical, biological, and chem-
ical sensors. Diamond has demonstrated itself as an ideal can-
didate  for  developing  robust,  high-reliable,  and  long-endur-
ance NEMS/MEMS in  harsh environments  due to  its  excellent
physical, chemical, electrical, and tribomechanical characterist-
ics[34–39]. Great effort and progress have been made in develop-
ing  diverse  diamond  NEMS/MEMS  structures  among  single-
crystalline, polycrystalline, nanocrystalline, and ultra-nanocrys-

talline  diamonds.  Micro-  or  nanoscale  mechanical  resonators
bring  exciting  perspectives  for  ultrasensitive  sensing,  precise
measurements, and quantum technologies. As quantum mech-
anical  device  elements,  diamond  resonators  linked  to  optical
cavities  or  spins  have  been  extensively  investigated  for
quantum  science  and  technology.  For  instance,  Tao et  al.[40]

manufactured  single-crystalline  diamond  (SCD)  cantilevers
with a thickness of 85 nm and lateral  length of up to 240 μm
(Fig.  1(g)).  They  demonstrated  their  ultrahigh  quality  factors
over  one  million  at  room  temperature,  which  exceeds  those
of  state-of-the-art  single-crystalline  silicon  cantilevers  with  a
comparable  size  by  nearly  an  order  of  magnitude.  Besides,
full-scale  optomechanical  circuits  were  fabricated  in  wafer-
scale polycrystalline diamond thin film substrates[41]. The utiliz-
ation  of  freestanding  diamond  nano-mechanical  resonators
demonstrated  the  efficient  optomechanical  transduction
through optical  gradient  forces (Fig.  1(h))  with quality  factors
of over 11 200 integrated into on-chip Mach-Zehnder interfero-
meters.  Rath et  al.[42] show  active  modulation  of  diamond
nano-photonic  circuits  by  utilizing  mechanical  flexibility  in
freestanding  diamond  electro-optomechanical  resonators
(Fig. 1(i)) with high-quality factors over 9600.

Additionally, theoretical proposals and fundamental experi-
ments to mechanically couple NEMS/MEMS devices to intrins-
ic  quantum  two-level  systems  can  be  achieved  in  a  diamond
nano-mechanical  resonator  of  embedded  nitrogen-vacancy
(NV) centers[43–45]. Wilson-Rae et al.[44] demonstrated that a dia-
mond  nano-mechanical  resonator  mode  could  be  cooled  to
its  ground  state.  Moreover,  Barfuss et  al.[46] incorporated  a
single  electronic  spin  into  an  integrated  quantum  device.
They produced long-lived, coherent oscillations of an embed-
ded NV center spin and extended the NV’s spin coherence dur-
ation by introducing the time-varying strain in a diamond can-
tilever.  Riedrich-Moller et  al.[47] proposed  a  way  to  manufac-
ture 1D and 2D photonic crystal microcavities in a single-crys-
talline  diamond.  They  found  the  cavity  modes  can  be  modu-
lated resonance with the zero-phonon line with an increased
intensity  factor  of  2.8.  This  controlled  coupling  of  color  cen-
ters  to  photonic  crystal  microcavities  may  open  possibilities
for larger-scale diamond photonic quantum devices. 

2.4.  Microfabrication techniques of diamond devices

Fabrication  of  diamond  devices  and  NEMS/MEMS  is  of-
ten  challenging,  in  particular  for  single-crystalline  diamond
(SCD),  since  they  can  only  be  from  homoepitaxially/hete-
roepitaxial  growth  on  previously  grown  SCD  or  other  sub-
strates.  As  a  result,  the  accessible  SCD  templates  are  just  a
few  tens  of  millimeters  square.  Manufacturing  diamond
devices  and  NEMS/MEMS  typically  begins  with  the  fabrica-
tion  of  a  diamond  thin  film  or  membrane,  which  is  then  fol-
lowed by the assembly of the devices. Methods have been in-
vestigated  that  include  the  “thin  down”  technique,  the  liftoff
method,  the angle-etching procedure,  and focused ion beam
milling[48, 49].

The  “thin  down”  technique  begins  with  a  bulk  diamond
with a thickness of tens of microns. It is subsequently thinned
down  to  a  thickness  of  a  few  hundred  nanometers  through
dry  etching  by  capacitively  coupled  reactive  ion  etching
(RIE)[50]. This technique is frequently limited in size or suscept-
ible  to thickness  variations in  the bulk  slab,  demanding addi-
tional  safeguards[51].  Following  that,  structures  are  patterned
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using  electron  beam  lithography  (EBL)  and  dry  etching.  The
liftoff  method  by  ion  implantation  may  eliminate  the  thick-
ness  fluctuations[52–54].  The  ion-implanted  diamond  produces
a damaged layer,  which will  transform to an etchable  carbon
layer after  the annealing process and can be removed select-
ively  using  wet  etching.  EBL  and  dry  etching  can  shape  the
structures  after  reproducing  a  new  diamond  layer,  eliminat-
ing  any  damaged  diamond  layers,  and  transferring  the  new
diamond layer to a new substrate. In the angle etching meth-
od[55, 56],  the diamond is  first  printed with an etch mask,  then
etched  top-down  on  a  rotating  sample  stage  perpendicular
to the ion beam direction. After achieving the required vertic-
al  depth,  the  sample  is  tilted  to  the  collimated  ion  beam  at
an  acute  angle.  Angled  etching  involves  rotating  the  sample
stage  to  etch  beneath  the  mask,  and  the  etch  mask  is  re-
moved  after  the  required  undercut  has  been  achieved.  This
technique  enables  the  direct  construction  of  freestanding
devices in the bulk diamond without the requirement for pri-
or thin-down. Still, it limits the design flexibility since the etch-
ing angle automatically fixes the height of the resultant struc-
ture for  a  given device width.  Focused ion beam (FIB)  milling
is  the  most  controllable  technique[47, 53, 57] that  usually  util-
izes  Ga  or  other  ions  to  directly  produce  electron-transpar-
ent membranes with sub-micron positional precision. This tech-
nique enables  the direct  patterning of  diamonds without the
requirement for a mask, but is often costly.  Still,  it  has certain
disadvantages  in  potential  structural  damage,  implanted
ions,  and process scalability[53, 58–61],  which may be overcome
by  being  coupled  with  electron-beam-induced  etching  and
other processes in the future. 

3.  Challenges on scalable diamond devices

For mass production of industrial semiconductor devices,
semiconductor  materials  are  required  to  achieve  high  purity,
low  defect  density,  high  carrier  concentration  and  mobility,
and  large  area  wafer.  However,  doping  and  fabrication  of
high-quality large-area SCD wafers are still worldwide scientif-
ic  problems  for  diamond  materials.  The  tremendous  poten-
tial for realizing diamond devices above present device techno-
logy  is  contingent  upon  achieving  several  key  objectives,  in-
cluding  the  synthesis  of  ultrahigh  purity,  high-quality  wafer-
scale  SCDs,  and  the  ability  to  provide  carriers  via  controlled
doping. 

3.1.  Growth of large-area single-crystalline diamond

wafers

Although  commercially  accessible  high-quality  polycry-
stalline  diamond  has  many  attributes  comparable  to  the
finest  natural  diamonds,  grain  boundaries  can  still  impact  its
electronic  performances  due  to  the  crystal  defect  nature  and
existence  of  various  impurities  such  as  nitrogen,  silicon,  and
others[62].  The  polycrystalline  diamond  devices  prohibit
them  from  achieving  the  maximum  performance  predicted
by  SCD  characteristics  in  numerous  applications.  As  a  result,
electronic devices have significantly reduced charge carrier mo-
bility[26],  and  detectors  experience  insufficient  charge  collec-
tion[27], leaving SCD to be the only alternative for the most de-
manding applications.

For the past 70 years, synthetic SCDs have been manufac-
tured  using  high-pressure,  high-temperature  (HPHT)  pro-
cesses[63–66] and,  recently,  chemical  vapor  deposition  (CVD)

technology[67–69].  Although  SCDs  generated  through  the
HPHT  process  have  an  extraordinarily  low  dislocation  den-
sity[70, 71],  doping  is  difficult  to  manage.  Furthermore,  since
the  growing  device  intrinsically  constrains  the  diameter  of
the  HPHT diamond,  it  is  inappropriate  for  wafer  manufacture
and  very  large-scale  integration  (VLSI).  The  CVD  method  en-
ables the production of diamonds with a high degree of crys-
tallinity  under  precisely  regulated  circumstances,  substan-
tially lower nitrogen content with a few hundred parts per mil-
lion[72],  and  can  better  control  the  incorporation  of  impurit-
ies  by  adjusting  the  growth  chemical  process.  Additionally,
CVD  growth  can  provide  high-quality  large-size  SCDs  suit-
able for diamond photoelectric applications.

Numerous approaches to large-area SCD wafer (Figs. 2(a)–
2(c))  synthesis  reach  50  mm  in  diameter.  In  homoepitaxy,
single  crystals,  such  as  those  obtained  by  the  HPHT  method,
are  utilized  as  seeds  and  are  replicated  namely  "mosaic"
wafer. Among the numerous techniques for CVD diamond, mi-
crowave  plasma  CVD  has  attracted  significant  attention  ow-
ing  to  its  ability  to  combine  high  purity  with  rapid  growth
rates  (>100 μm/h)[73] and  sufficient  lateral  dimensions  (6
inches)[74].  For  example,  microwave  plasma  CVD  was  used  to
fabricate  mosaic  diamonds  wafer  2  inches  (40  ×  60  mm2)[75]

or  above[69, 76] in  size  via  the  lateral  tiling  of  smaller  SCD
plates made using a smart-cut-like extraction technique from
tiny HPHT produced boules. In the lateral tiling growth, an en-
semble  of  identically  oriented  clones  is  positioned  next  to
one  another,  and  their  lateral  dimensions  may  be  somewhat
enlarged  under  appropriate  growing  circumstances.
However,  one  of  the  primary  problems  concerning  such
wafers'  applicability  is  internal  coalescence  boundaries,  as
shown  in Fig.  2(b)[77].  Due  to  the  loss  in  device  consistency,
such  extremely  imperfect  structures  diminish  the  electrical
performance.

In heteroepitaxy, the substrate is critical for the SCD's prop-

 

Fig.  2.  (Color  online)  Synthetic  diamonds.  (a)  Microwave  plasma-as-
sisted CVD growth of SCD over 70 large 3.5 × 3.5 mm2 HPHT seed crys-
tals[11, 106]. (b) A mosaic wafer (40 × 40 mm2) in which CVD growth con-
nects diamond plate fragments horizontally[77].  (c) A 155-carat freest-
anding pristine SCD with a thickness of 1.6 ± 0.25 mm and diameter
of  90  mm  fabricated  by  heteroepitaxy  on  Ir/YSZ/Si(001)  in  a  mi-
crowave  plasma  CVD[76].  (d)  An  amorphous  carbon  material  AM-III
showing  the  intrinsic  semiconducting  nature  with  a  bandgap  of
1.5–2.2 eV[104].
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erties:  easy  acquisition  of  high-quality  and  large-size  sub-
strates,  the  substrate's  lattice  mismatch  with  diamond  to  re-
duce misfit dislocations at the interface, excellent thermal ex-
pansion  coefficient  matching  with  diamond  to  reduce
thermal stress, carbon's solubility in the substrate, and the in-
teraction with C atoms (specifically,  its  inclination to produce
stable  carbides)  all  affect  the  nucleation  and  growth  of  dia-
mond.  c-BN[78, 79],  Pt[80],  Ni[81],  Co[82],  Ir,  Si[83],  SiC[84],  TiC[85] are
all common substrates for the growth of SCDs. At present, in-
vestigations[76, 86, 87] conducted  over  several  decades  have
shown  that  Ir  is  the  most  promising  substrate  for  heteroep-
itaxy  growth  of  diamonds.  Additionally,  numerous  studies
have  been  conducted  to  ascertain  the  physical  explanations
underlying  its  uniqueness[88–92].  Essentially,  a  range  of  altern-
ate  substrate  materials  (Si,  Cu,  Ni,  Re,  β-SiC,  TiC)  enables  the
formation of the specific oriented diamond. The density of epi-
taxial  diamond  grains  on  all  alternative  substrates  was  much
lower  than  Ir,  and  their  orientation  dispersion  was  substan-
tially  larger.  Therefore,  even  elongated  growth  could  not
form true single crystals from epitaxial layers.

Nevertheless, due to the scarcity of single-crystalline Ir sub-
strates,  Ir  multilayer  substrates  (such  as  Ir/MgO[93, 94],  Ir/sap-
phire[95–97], Ir/STO (strontium titanate)/Si[98, 99], Ir/YSZ (yttria-sta-
bilized  zirconia)/Si[76, 100,101])  have  been  proved  to  be  the  ex-
traordinary  candidates  for  diamond  nucleation  and  growth
with a structural quality unrivaled by any other (scalable) sub-
strate[102].  However,  the  coefficients  of  thermal  expansion
MgO, SrTiO3, and even sapphire still significantly diverge from
that  of  diamond,  which results  in  enormous thermal  stress  in
the  Ir  multilayer  after  being  cooled[103].  In  comparison  to
these  substrates,  silicon  is  by  far  proved  to  be  the  best
choice[103].  The  growth  of  diamond  on  Ir/SrTiO3/Si  substrate
shows a homogeneous and dense structure with good crystal-
line  quality  by  the  bias  enhanced  nucleation  technique[98, 99].
Schreck et al.[76] have reached the stage where heteroepitaxi-
al  diamond  with  a  diameter  of  92  mm  can  be  achieved  by
the introduction of the multilayer substrate Ir/YSZ/Si (100),  as
shown in Fig.  2(c).  Recently,  an amorphous diamond-like  car-
bon  material[104] with  a  high  percentage  of  sp3 bonding  was
synthesized  and  demonstrated  to  be  the  hardest  and
strongest  amorphous  material  known  to  date,  capable  of
scratching natural  diamond,  as  shown in Fig.  2(d).  Besides  its
remarkable  mechanical  characteristics,  it  may also  be  utilized
in electronics and photovoltaic applications due to its semicon-
ducting nature with a bandgap of  1.5–2.2 eV.  Moreover,  they
further  fabricated  a  semiconducting  amorphous  carbon  with
a narrow bandgap of 0.1–0.3 eV from fullerene C60 powder, ex-
hibiting isotropic super hardness and superior toughness[105]. 

3.2.  Doping of diamond

Several issues should be fixed to fully use diamond's elec-
trical capabilities before this material can be used largely. The
primary impediment[107–109] is  achieving an effective n-and p-
type  doped  diamond  that  could  be  utilized  to  fabricate  a  bi-
polar  electronic  device's  essential  building  block  –  the  p–n
junction.  Owing  to  the  large  bandgap  of  5.47  eV,  pure  dia-
mond  is  a  superb  insulator.  At  room  temperature,  its  inher-
ent  carrier  concentration  is  very  low,  and  as  a  result,  the  res-
istivity of pure diamond may surpass 1016 Ω·cm[110]. Over past
decades,  researchers  have  sought  to  exploit  diamond's  ex-
tremely desired characteristics for various electrical device ap-

plications. As is the case with the bulk of today's semiconduct-
ing materials,  diamond's  crystal  lattice  must  be  doped to  get
suitably  stable,  mobile,  and  high-density  charge  carriers.  Ef-
forts  to  develop  a  mature  diamond  doping  technique  have
met  several  challenges.  The  ionization  energy  of  dopants  in
wide  bandgap  (WBG)  semiconductors  is  greater  than  that  in
narrow  bandgap  semiconductors,  leading  to  a  low  activation
temperature.  For  instance,  4-H  SiC  possesses  shallow  donors
(n-dopant)  but  no  shallow  acceptors  (p-dopant).  Known
dopants have much higher ionization energy in the diamond;
obtaining shallow donors and deep acceptors in diamond us-
ing  impurity  doping  with  activation  energies  adequate  for
room  temperature  operation  is  incredibly  challenging,  as  in
other WBGs. 

3.2.1.    p-type diamond
Boron, one less electron than carbon, is very easy to integ-

rate  into  diamond  due  to  its  tiny  atomic  radius[111].  Since
boron  functions  as  a  charge  acceptor,  the  resultant  diamond
is  essentially  hole-doped.  Boron-doped  p-type  diamonds  oc-
cur naturally. Boron established itself as one of the most hope-
ful  impurity donors for p-type doping in diamond, despite its
relatively  high  activation  energy  of  0.37  eV[8, 112].  It  has  been
the  'dopant  of  choice'  since  the  1970s.  CVD  methods  have
been  used  to  fabricate  boron-doped  diamonds  by  mixing  B-
containing molecules in either a microwave (MW) or a hot fila-
ment  (HF)  reactor,  leading  to  the  formation  of  boron-doped
p-type  diamond.  Teukam et  al.[113] realized  a  high-conductiv-
ity  n-type  diamond  through  the  deuteration  of  homoepitaxi-
ally  synthesized  boron-doped  (100)  diamond  films  with  elec-
trical  conductivities  up  to  2  Ω–1cm–1 and  electron  mobilities
of  a  few  hundred  cm2/(V·s)  at  room  temperature.  Further-
more, Ekimov et al.[114] experimentally found superconductiv-
ity  in  near  3%  boron-doped  diamond  with  a  superconduct-
ing  transition  temperature  of Tc ≈  4  K.  Its  superconductivity
sustains  in  magnetic  fields  up  to Hc2(0) ≥3.5  T.  Then,  theo-
retical  work  indicated  an  electron-phonon  coupling  mechan-
ism[115–120].  Kawano et  al.[121] investigated  the  critical  boron
doping  content  (9  ×  1020 cm–3)  of  the  superconductivity  of
(110) diamond film, which is higher than 3 × 1020 cm–3 of the
(111)  and  (001)  diamond  films  owing  to  the  presence  of
boron  atoms  in  the  interstitial  space.  Lloret et  al.[122] pro-
posed  a  method  for  growing  homoepitaxial  diamonds  speci-
fically  doped  with  boron  for  diamond  electrical  devices  by  a
microwave plasma-enhanced CVD method. The boron-doped
p-type  diamond  is  already  well-established  and  commer-
cially  available.  However,  the  mobility  of  holes  in  boron-
doped  diamond  has  been  found  to  be  reduced  substantially
when  either  the  dopant  concentration  or  the  temperature
rises[10, 123–125],  which  hinders  its  high-temperature  applica-
tions. 

3.2.2.    n-type diamond
On the other hand, n-type diamond does not occur natur-

ally, and it is challenging to acquire n-type semiconducting dia-
mond with high quality. Since the early 1980s, when the CVD
method  for  the  growth  of  diamond  was  developed,  n-type
doping has been studied. Based on the conventional dopants
used  in  Si,  it  is  anticipated  that  group  V  (N,  P)  and  VI  (S)  ele-
ments  in  diamond  are  promising  donor  impurities.  Nitrogen
(with its extra electron compared to C) is the most common im-
purity in an n-type diamond. Nitrogen exists in diamonds in al-
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ternative  ways,  and  substitutional  nitrogen  easily  enters  the
diamond  lattice,  which  fits  in  with  its  negative  formation  en-
ergy  (–3.4  eV)[126].  However,  it  is  an  extremely  deep  donor
level  with  approximately  1.7  eV  below  the  conduction  band
in  the  diamond,  which  maintains  the  insulative  of  the  dia-
mond  at  room  temperature.  Despite  the  high  activation  en-
ergy of 0.6 eV for phosphorous at ambient temperature, it re-
mains  the  most  popular  donor  for  n-type  impurity  doping  of
diamond[127–131].  Yu et  al.[132] fabricated  a  phosphorus-doped
diamond via the CVD growth method and used it as the elec-
trode  to  fabricate  supercapacitors.  Koizumi et  al.[129] studied
the semiconducting characteristics of phosphorus-doped dia-
mond  films  deposited  by  a  metal-chamber-type  microwave
plasma-assisted  CVD  method  across  a  broad  temperature
range using Hall  measurements.  At room temperature,  the n-
type  conductive  diamond  film  achieved  on  a  (111)-oriented
diamond substrate exhibits  mobility  up to 100–240 cm2/(V·s).
The carrier's activation energy was approximately 0.6 eV. Kato
et  al.[133] fabricated  a  phosphorus-doped  n-type  (001)-ori-
ented  SCD  using  homoepitaxial  growth  plasma-enhanced
method through introducing PH3 gas.  The  n-type conductive
diamond  showed  the  highest  mobilities  of  about  350
cm2/(V·s) by Hall-effect measurements.

The poor phosphorus incorporation efficiency is still a seri-
ous obstacle, although Ohtani et al.[134] reported a method to
increase the doping efficiency by systematically changing the
internal design of the CVD chamber. Moreover, although phos-
phorus-doped  diamond  film  achieved  donor  concentrations
up to 6.8 × 1016 cm–3,  the activation energy was so high that
the  carrier  concentration  was  restricted  to  1011 cm–3 at  room
temperature[129]. Sakaguchi et al.[135] successfully achieved sul-
fur-doped  homoepitaxial  (100)-oriented  diamond  film.  They
confirmed that  it  showed n-type conduction through Hall-ef-
fect  measurements  in  the  temperature  from  250  to  550  K.
The film showed 597 cm2/(V·s)  electron mobility at room tem-
perature.  The  ionization  energy  was  0.38  eV.  However,  Kalish
et  al.[136] demonstrated  that  the  Hall  coefficient  of  sulfur-
doped  diamond  was  consistently  positive,  indicating  p-type
conductivity as a function of temperature, with activation ener-
gies,  carrier  concentrations,  and mobilities  that  are extremely
similar to those of boron-doped p-type diamond, which indic-
ated that which was formerly assumed to be n-type owing to
a donor state ascribed to sulfur, containing sufficient accident-
al boron to account for the observed p-type characteristics.  It
should,  however,  be  noted  that  calculations[137] do  not  ex-
clude the likelihood that sulfur in diamond exhibits donor-re-
lated  conductivity,  which  is  especially  apparent  at  elevated
temperatures. 

4.  Elastic strain engineering of diamond

Elastic  strain  engineering  (ESE)  can  bring  materials  with
unique  characteristics  by  applying  considerable  mechanical
stress or strain[138]. In fact, “strain engineering” has been a com-
monly  utilized  technique  for  optimizing  the  performance  of
semiconductor  devices.  For  example,  stress  may  increase  a
semiconductor's electron mobility, allowing more efficient sol-
ar cells[139] and smaller, quicker transistors[140]. Now, as the de-
velopment  of  "ultra-strength"[141, 142] materials,  referring  to  a
material  reaching sample-wide stress  exceeding a  substantial
percentage  (>1/10)  of  its  theoretical  strength  over  a  pro-

longed length of time, mechanical straining has been an effect-
ive  approach  to  modulate  semiconductors  at  small  length
scales  due  to  well-known  “size  effect”,  that  is,  “smaller  is
stronger”. At the nanoscale, even "deep ultra-strength"[143], re-
ferred to the sample-wide stress reaching one half of the bulk
theoretical  strength,  can  be  achieved  and  applied  for  deep
strain  engineering  of  functional  devices.  Deep  ESE  thus
defines the elastic strain as going beyond half of its theoretic-
al strain. Previous density functional theory calculations[99–102]

found  that  the  bandgap  structure  of  diamond  under  large
strains will  undergo fundamental  changes,  which could open
up  new  avenues  for  diamond  electronics.  However,  due  to
bulk  diamonds'  extremely  high  hardness  and  brittleness,  the
deep ESE strategy for diamonds has long been regarded as in-
feasible.  This  part  will  review  the  recent  efforts  to  realize  the
diamond's elastic deformation and deep elastic strain engineer-
ing. 

4.1.  Elastic deformation of diamond

In  past  decades,  the  mechanical  properties  of  diamond
have  been  investigated  using  various  techniques  such  as  in-
dentation[144],  scratch[145],  and  diamond  anvil  cell  compres-
sion[146].  However,  these  tests  produced  complicated  stress
states, and the elastic strain was generally limited (<1%). In re-
cent  years,  with  the  advancement  of  micro/nano-mechanical
testing technologies and nano-manufacturing, it has been pos-
sible  to  conduct  micro/nano-mechanical  tests  on  diamond.
Wheeler et  al.[147] performed  the  uniaxial  compressive  test  of
the  focused  ion  beam  (FIB)-machined  diamond  pillars  and,
for  the  first  time,  experimentally  realized  the  theoretical  lim-
its  of  strength.  Then,  Banerjee et  al.[148] discovered  that
single-crystalline  diamond  needles  at  the  nanometer  scale
have  unexpectedly  high  elasticity  and  can  locally  produce
large  elastic  deformation  up  to  9%  by  a  unique  "push-to-
bend"  testing  strategy,  as  shown  in Figs.  3(a)–3(c)[148].  This
discovery  reveals  the  possibility  of  modulating  the  physical
properties  of  the  diamond  through  a  whole  new  strategy,
i.e.,  deep  ESE[149, 150].  Moreover,  Nie et  al.[151] demonstrated
the  maximum  tensile  strain  and  strength  that  can  be
achieved  of  single-crystalline  diamond  nanoneedles  along
with  [100],  [110],  and  [111]  directions  with  various  diameters
by  the  similar  "compress-to-bend"  method.  They  further
achieved  up  to  13.4  %  elastic  strain  of  [100]-oriented  dia-
mond,  which  approaches  its  theoretical  strain  limits  (Fig.
3(d)).  However,  accuracy  control  at  a  sufficiently  massive
volume is required to fully exploit deep ESE in real device ap-
plications.  Efforts  to  stretch  diamonds  were  often  restricted
by  the  strain  contained  inside  a  limited  sample  volume  due
to  flexural  bending,  producing  an  uneven  strain  distribution.
These specimens were also difficult to manage, and the result-
ant  area/volume  under  large  strains  is  extremely  concen-
trated. 

4.2.  Uniform tensile elastic straining of diamond

With  the  improved  microfabrication  techniques,  as
shown  in Fig.  3(e),  single-crystalline  diamond  bridge  struc-
tures can be precisely microfabricated by FIB-assist processes,
and a uniaxial tensile test can be realized for such smooth dia-
mond specimens by using a nanoindenter with a customized
tensile  diamond  gripper[105].  Such  diamond  microbridges  ex-
hibited a significantly uniform, large elastic deformation of ap-
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Fig. 3. (Color online) Elastic strain engineering of diamond. (a–c) Schematic of the "push-to-bend" deformation of the nanoscale diamond needle
with maximum deformation just before fracture, corresponding FEM simulation reproducing the geometry of the bending and displaying the loc-
al elastic maximum principal strain[148]. (d) "Compress-to-bend" deformation test on a FIB-machined single-crystalline nanoscale diamond needle
along with [100] direction to the maximum bending deformation just before fracture and corresponding FEM simulation replicating the crucial
nanoneedle shape and distribution of maximum principal strain[151]. (e, f) Uniaxial tensile setup of the diamond bridge with loading-full-unload-
ing deformation,  corresponding FEM simulation reproducing the geometry of  the diamond bridge illustrating the longitudinal  distribution of
elastic  strain[152].  (g)  Tensile  deformation of  a  diamond array with multiple  bridges reaching a  maximum tensile  strain of  6%[152].  (h)  Diamond
bandgap envelope expanding to the semiconductor area with decreased bandgap. The black and red dots respectively denote the upper- and
lower-envelope  functions.  The  right  side  shows  an  illustration  of  bandgap  isosurfaces  in  the ε1ε2ε3 strain  space[149].  (i)  Detailed ε11– ε22 strain
space  showing  an  area  of  direct  metal  strains  (brown)  within  the  area  of  direct  bandgap  strains  (blue)  and  an  area  of  indirect  metal  strains
(brown) within the nonzero indirect bandgap strains (white region with magenta symbols)[153]. (j) Three semiconducting, conducting, and super-
conducting stages of electronic bandgap evolution in progressively deformed diamond under (11 )[111] compression-shear strain and strain de-
pendence of critical temperature Tc for a selected range of Coulomb pseudopotential μ*[154].
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proximately 7.5% strain through the entire gauge area of  the
bridge during quantitative tensile testing, rather than deform-
ing  in  a  limited  region  during  bending,  as  shown  in Fig.  3(f).
Ultralarge  uniform  elastic  strains  (6%–8%)  in  microfabricated
diamonds  orientated  in  the  [100],  [101],  and  [111]  directions
were consistently  achieved.  Up to 9.7% uniform tensile  strain
was  then  realized  by  refining  the  sample  shape  by  adopting
the American Society for Testing and Materials (ASTM) stand-
ard  for  brittle  tensile  specimens,  which  approaches  the  dia-
mond's  theoretical  elastic  limit.  Besides,  in  situ  straining  of
the  microfabricated  diamond  array  containing  multiple
bridges  was  also  realized,  indicating a  large,  uniform,  and re-
versible  straining  among  the  multiple  diamond  bridges  to
demonstrate  diamond-based  ESE  device  applications,  as
shown in Fig. 3(g). These discoveries pave the way for practic-
al  applications  and  provide  fundamental  solutions  for  apply-
ing  deep  elastic  strain  engineering  of  diamond  devices,
which  opens  the  wide  application  potential  of  "strained  dia-
mond" in electronics and optoelectronics. 

4.3.  Tuning electronic properties of strained diamonds

The experimental discoveries have established that the dia-
mond  can  be  elastically  deformed  up  to  its  theoretical  strain
limits. These advances offer possibilities to explore its function-
al  performances  by  elastic  strain  engineering.  A  surprising
atomistic  ductility  and  electronic  conductivity  were  revealed
in  diamonds  under  complex  loading  conditions  of  large  con-
current  shear  and  compressive  strains  by  density  functional
theory  (DFT)  calculation[150].  The  electronic  bandgap  of  dia-
mond  decreased  with  increasing  pure  shear  strain  and  con-
strained shear strain, the opposite to the increase of bandgap
with homogeneous compressive strain. Then, Shi et al.[149] stud-
ied the effects of full six-dimensional space of admissible non-
linear elastic strain on the bandgap of the diamond by high-ac-
curacy  machine  learning  methods.  They  found  that  finding
the  most  energy-efficient  strain  paths  could  convert  dia-
mond  from  an  ultrawide  bandgap  material  to  a  wide-
bandgap semiconductor comparable to InAs, as shown in Fig.
3(h). Moreover, Dang et al.[152] show the relationship between
uniaxial  strain  and  calculated  bandgap  values  along  with
[100],  [101],  and  [111]  directions  according  to  corresponding
experimental results. The bandgap values were found to be a
decreasing  trend  for  three  directions  as  the  strain  increased,
and  an  indirect-to-direct  transition  may  achieve  along  with
the  [111]  direction  with  applied  strain  over  9%.  Experimental
characterization of  the  bandgap was  conducted on a  bent  T-
shaped  sample  by  electron  energy  loss  spectroscopy  (EELS),
which  verified  the  decreasing  trend  by  calculation.  Further-
more, the diamond may undergo reversible metallization, de-
metallization,  and  indirect-to-direct  bandgap  transitions,  if
the  strain  levels  required  for  phonon  instability  are  kept  be-
low  the  threshold  values  (Fig.  3(i))[153].  Liu et  al.[154] dis-
covered  an  unexpected  path  to  superconductivity  in  dia-
mond  via  compression  shear  deformation.  As  the  strain  in-
creases,  increasing  metallization  and  lattice  softening  occur,
resulting in phonon mediated critical  temperature Tc ranging
from 2.4 to 12.4 K for a wide range of Coulomb pseudopoten-
tial μ* = 0.15–0.05 (Fig. 3(j))[154]. 

5.  Conclusions and perspectives

With the increasing need for wide bandgap semiconduct-

ors, the arrival of 5G and even future 6G networks, and the de-
mand  for  power  electronics  chips  for  electric  vehicles,  dia-
mond has become an ideal electronic material  for such critic-
al  applications.  Here,  we  can  only  briefly  cover  a  few  efforts
on  diamond-based  high  voltage  switching  diodes,  high-
power high-frequency FET, devices operating at high temperat-
ures, and MEMS/NEMS. Although diamond offers enormous po-
tential,  it  also has several  characteristics that pose difficulties.
We  then  described  the  production  issues,  including  the
wafer-scale  production  of  electronics-grade  high-quality  dia-
monds.  Significant  progress  has  been  made  on  high-quality
CVD  diamond  thin  films  with  a  4-inch  diameter[76] or  larger,
but  defects  still  have  to  be  minimized.  The  dimension  of  the
homoepitaxial  diamond  is  also  increasing,  particularly  when
the mosaic technique is used[69, 75, 76]. We believe the high-effi-
ciency manufacturing of  the large-area  high-quality  diamond
wafer  can  be  realized  by  developing  advanced  equipment
and improving homoepitaxial and heteroepitaxial growth tech-
niques in the near future. The increasing SCDs sizes would pro-
mote  the  production  of  diamond-based  electronic  devices  in
the future, where point defects are not as detrimental as they
are in electrical devices.

We  also  described  the  shallow  doping  problems  in  dia-
monds  for  realizing  diamond  microelectronics  applications.
The  growth  and  application  of  p-type  diamonds  with  boron-
doping  are  considerably  mature.  Ion  implantation  or  CVD
may be used to precisely control  the impurity level  and carri-
er transport performance. The absence of effective and practic-
al n-type conductive diamond materials, on the other hand, re-
stricts the use of diamond semiconductor materials in the elec-
tronic  field.  In  general,  there  are  still  great  difficulties  in  the
synthesis  of  low-resistivity  n-type  diamond  films.  It  deserves
further  investigation  into  improving  doping  technology,  in-
creasing electron mobility, and reducing resistivity in the fabric-
ation  of  n-type  diamond  semiconductors.  We  then  proposed
an alternative way, “elastic strain engineering”, to modulate a
diamond’s  electronic  properties,  which  was  considered  im-
possible  due  to  its  inherent  mechanical  characteristics.  Now
with  the  development  of  microfabrication  techniques,  ul-
tralarge  elastic  strains  can  be  well  realized  in  diamond
micro/nanostructures[148, 151, 152] through  the  size  effect,  and
the  bandgap  values  of  the  diamond  can  be  then  tuned  by
elastic straining, as further suggested by some advanced simu-
lations[149, 150],  which make it  possible  for  elastic  strain engin-
eering of diamond under complicated load configurations. The-
oretically,  it  is  even  possible  to  achieve  metallization[153] in
the diamond when imposing extreme strain values, or even su-
perconducting state by combining compression-shear deform-
ations[154],  which  may  open  infinite  possibilities  in  the  future
development of diamond electronic devices.

Additionally, as diamond is also a popular quantum materi-
al[155, 156],  it  is  found  that  diamond  single  quantum  systems
can also be controlled by imposing mechanical strain, in con-
trast  to  established  methods  that  rely  on  electromagnetic
fields.  Strain,  for  example,  has  already  been  suggested  to  be
utilized to transport information between remote quantum sys-
tems[157] and  cool  mechanical  oscillators  to  their  quantum
ground state[44], which opens new perspectives for quantum in-
formation technologies.

Nevertheless,  grand challenges  remain  in  permitting dia-
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mond  microelectronics  and  optoelectronics  to  the  industry
level.  For  example,  establishing  the  planar  processing  of  dia-
mond for high-efficiency and reproducible large-scale manufac-
turing  would  be  the  primary  challenge  for  building  individu-
al  components  of  integrated  circuit  chips.  Besides,  maintain-
ing  the  robust,  highly  strained  diamond  for  an  extended
length of time with accurate bandgap control and characteriza-
tion  would  be  another  challenge.  A  lattice  mismatch  of  dia-
mond  films  grown  on  different  heterogeneous  substrates
could be a  possible  way to  realize  certain  “strained diamond”
devices and ultimately incorporate them into large-scale pro-
ductions,  but  deep  ESE  requires  some  fundamentally  new
strategies  and  manufacturing  processes  for  practical  imple-
mentation  of  strained  diamond  architectures.  This  exciting
field  is  currently  undergoing  rapid  development  and  defin-
itely  needs  joint  efforts  from  multi-disciplinary  researchers
and industrial experts. 
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